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Abstract 
The filled function technique is a highly efficient and successful approach for 

addressing global optimization problems. The performance of the filled function 

relies on parameters and attributes such as continuity, differentiability,  and speed 

rate of reaching the optimal solution. This paper introduces a continuously 

differentiable filled function with a single parameter, and theoretical arguments 

are offered to demonstrate its features. A filled function method is built based on 

the suggested function to solve unconstrained global optimization issues. The 

numerical results of the suggested filled function on various test functions 

demonstrate the efficiency of this method. 
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1. Introduction 

The general formula of the unconstrained global optimization problem can be 
given as follows: 

(𝑃) ∶ min𝑥∈Ω 𝑓(𝑥)                                                                       (1) 

where 𝑓(𝑥) is continuously differential objective function and 𝛺 = ∏ [𝑙𝑖, 𝑢𝑖] 𝑛
𝑘=1 ⊂

ℝ𝑛 is a search domain area [1]. 

We present in this paper a single prameter filled function to find the solutions of 
the problem (𝑃) as follows: 

𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) = exp (−𝜌‖𝑥 − 𝑥𝑘

∗‖2)𝑟(𝑓(𝑥) − 𝑓(𝑥𝑘
∗))                   (2) 

where 

𝑟(𝑡) = {
    1                           𝑡 ≥ 0,
2 − exp (−𝑡)         𝑡 < 0,

 

𝜌 > 0 is parameter, 𝑡 = (𝑓(𝑥) − 𝑓(𝑥𝑘
∗)) and 𝑥𝑘

∗  is the current local minimizer so far. 
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On the other side, 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) does not require to go more down in the interval 

when 𝑓(𝑥) < 𝑓(𝑥𝑘
∗), it just needs to locate any minimizer or stationary point that is 

used as an initial point to minimize 𝑓(𝑥) to locate more efficient solutions.  The 
parameter 𝜌 helps to find that point (stationary point) with the least time and least 
function evaluation which is important in global optimization problems 
formulation modelling.  

Figure 1 explains how the filled function works and starts from the current local 
minimizer 𝑥𝑘

∗  , avoiding the higher minimizer 𝑥𝑘+1
∗   and finding a better solution 𝑥∗ 

with the effects of the parameter 𝜌. 

 

 

 

 

 

 

 

 

 

 

Figure 1. Illustration of the proposed filled function for different  𝜌. 

A wide variety of real-life problems have been successfully and reliably resolved 
using global optimization techniques. They have been used in numerous scientific 
fields, including computer science and information technology, agriculture, 
geography, engineering, economics or even in everyday life such as planning a 
tourist trip [2-4]. 

According to theoretical studies and numerical experiments, the filled function 
method considers one of the most effective and successful methods for finding the 
solution to global optimization problems. The filled function approach is a 
deterministic method that uses deterministic ways to avoid the current local 
minimizer and instead discover other suitable solve. In 1987 Ge and Qin presented 
the first version of the filled function [5,6], and this function was developed by Xu 
and Wu [7-9]. The work of the filled function approach was discovered to provide 
answers to three logical queries: the first is how to identify the local minimizer, the 
second is how to leave the present local minimizer and locate other suitable 
solution, and the third is how to converge from the global minimizer point.  
Numerous investigations have been conducted to create the filled function 
approach as a result of these reasons., see [11-12]. 

2. Preliminaries 

The following presumptions must be defined and used for the duration of this 
paper. 
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A1: Considering that Ω is a closed bounded set that includes all local minimizers of 
𝑓, we describe  S1  = {𝑥 ∈  Ω| 𝑓(𝑥)  ≥  𝑓(𝑥𝑘

∗), 𝑥 ≠ 𝑥𝑘
∗  } and S2  =  {𝑥 ∈  Ω| 𝑓(𝑥)  <

 𝑓(𝑥𝑘
∗  )}. 

A2: The number of all values of the local minimum of the function 𝑓 must be 
countable and limited. 

A3: Suppose that 𝑓(𝑥) is coercive. Then, this aspect indicates that 𝑓(𝑥) →
 +∞ 𝑎𝑠 ‖𝑥‖  →  +∞. 

According to the above assumptions,  we introduce the following definitions: 

Definition 2.1 [11]: Assume that 𝑥𝑘
∗ ⊂ Ω is a local minimizer of 𝑓 so far. The set 𝐵𝑘

∗  
⊂  𝛺 is named a basin of the function 𝑓(𝑥) at the point 𝑥𝑘

∗  if one of the local search 
methods going from each point in Bk

∗  gets 𝑥𝑘
∗ . The point  𝑥𝑘+1

∗  of  𝑓 is greater or less 
than the minimizer 𝑥𝑘

∗  if 𝑓(𝑥𝑘+1
∗ ) ≥  𝑓(𝑥𝑘

∗  ) 𝑜𝑟 𝑓(𝑥𝑘+1
∗ )  ≤  𝑓(𝑥𝑘

∗  ) , the basin 𝐵𝑘+1
∗  at 

𝑥𝑘+1
∗   which can be called greater or less than Bk

∗ .  

Definition 2.2 [11]: Let 𝑥𝑘
∗  is a local minimizer of 𝑓. A function 𝐹(𝑥, 𝑥𝑘

∗ , 𝜌) is called 
a filled function of the objective function 𝑓(𝑥) at 𝑥𝑘

∗  if it meets the following 
criteria:  

 𝑥𝑘
∗   is a local maximizer of 𝐹(𝑥, 𝑥𝑘

∗ , 𝜌), and the whol basin 𝐵𝑘
∗   is a part of a 

hill of 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌). 

 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) has no stationary point in all basins of 𝑓(𝑥) greater than 𝐵𝑘

∗ . 

 If the point 𝑥𝑘
∗  is not a global minimizer of 𝑓(𝑥) in that case 𝑓(𝑥) has a basin 

lower than  𝐵𝑘
∗   and 𝐹(𝑥, 𝑥𝑘

∗ , 𝜌) must have a stationary point in that basin. 

3. Theoretical Part 

In this part, we demonstrate that 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) is a filled function and meets the 

conditions defined in Definition 2.2. 

Theorem 1: Assume that 𝑥𝑘
∗  is a current local minimum found so far of the 

objective function 𝑓(𝑥)  and 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) is a filled function at the point 𝑥𝑘

∗ , therefore 
𝑥𝑘

∗  is a strict maximizer of the function  𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) for all 𝜌 > 0. 

Proof: Since 𝑥𝑘
∗  is a local minimizer of the function 𝑓(𝑥)  and 𝐵𝑘

∗   is a basin of 𝑥𝑘
∗ , 

therefore ∀𝑥 ∈ 𝐵𝑘
∗ , 𝑥 ≠ xk

∗ , we have f(x) > 𝑓(xk
∗ ) and 𝑡 > 0. 

So 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) = 𝑒𝑥𝑝(−𝜌‖𝑥 − 𝑥𝑘

∗‖2) < 1 = 𝐹(𝑥𝑘
∗ , 𝑥𝑘

∗ , 𝜌), that is the first condition of 
Definition 2.2 is achieved and 𝑥𝑘

∗  is a local maximizer of the function 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌).  

Theorem 2: Let 𝑥𝑘
∗  is a local minimum point of 𝑓(𝑥), and for any point  𝑥 belongs 

to the set S1,  the function   𝛻𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) ≠ 0  for each 𝜌 > 0. 

Proof: By using any point 𝑥 ∈ S1  = {𝑥 ∈  Ω| 𝑓(𝑥)  ≥  𝑓(𝑥𝑘
∗), 𝑥 ≠ 𝑥𝑘

∗  } , we have 
𝑡 ≥ 0 that means 𝐹(𝑥, 𝑥𝑘

∗ , 𝜌) = 𝑒𝑥𝑝(−𝜌‖𝑥 − 𝑥𝑘
∗‖2) and 

∇F(𝑥, xk
∗ , ρ) = −2 𝜌(𝑥 − 𝑥𝑘

∗) exp(−𝜌‖𝑥 − 𝑥𝑘
∗‖2) ≠ 0. 

That mean for the whole the set S1, the function 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌)  lacks a stationary 

point. 
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Theorem 3: If the current local minimizer 𝑥𝑘
∗  is not a global of 𝑓(𝑥) , then the 

function 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) has at least one local minimum point in the set S2  =  {𝑥 ∈

 Ω| 𝑓(𝑥)  <  𝑓(𝑥𝑘
∗  )}. 

Proof: Since the point 𝑥𝑘
∗  is not a global munimum, then 𝑓(𝑥) has another local 

minimum point in S2. Since 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) is a smooth function (continuously 

differentiable) on Ω ⊂ ℝn, then 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) has a local minimum point when 

𝑓(𝑥) < 𝑓(𝑥𝑘
∗), say  𝑥′.  On the other hand, because 𝐹(𝑥, 𝑥𝑘

∗ , 𝜌) is differentiable at 𝑥′ 
and this point is a local minimum of 𝐹(𝑥, 𝑥𝑘

∗ , 𝜌), then 𝛻𝐹(𝑥′, 𝑥𝑘
∗ , 𝜌) = 0. We know 

that S2 is non-empty, that means there exists at least one point 𝑧′ ∈ S2 such that 
𝐹(𝑧′, 𝑥𝑘

∗ , 𝜌) < 0. Thus 𝐹(𝑥′, 𝑥𝑘
∗ , 𝜌) ≤ 𝐹(𝑧′, 𝑥𝑘

∗ , 𝜌) < 0 so 𝑥′ ≠ 𝑥𝑘
∗ . We know 

𝑥′ ∉ 𝑆1  = {𝑥 ∈  Ω| 𝑓(𝑥)  ≥  𝑓(𝑥𝑘
∗), 𝑥 ≠ 𝑥𝑘

∗  }, from Theorem 2;  therfor 𝑥′ ∈ S2. 

3.1. Filled function algorithm 

Finally, in this part we propose a filled function algorithm in the manner described 
below based on the previous information:  

Step 1: Set 𝑘 = 1, 𝜌 > 0, 𝜀 = 10−2 , choose directions 𝑑𝑖 (𝑖 = 1,2, … , 𝑛), and 
𝑥𝑖𝑛𝑡 ∈ Ω as an initial point. 

Step 2: Set 𝑖 =  1, use 𝑥𝑖𝑛𝑡 as a start point to minimizing the objective function 
𝑓(𝑥) and find any local minimum point 𝑥𝑘

∗ . 

Step 3: Construct the proposed filled function 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) at the current local 

minimum point 𝑥𝑘
∗  so far: 

𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) = exp (−𝜌‖𝑥 − 𝑥𝑘

∗‖2)𝑟(𝑓(𝑥) − 𝑓(𝑥𝑘
∗)) 

Step 4: If 𝑖 ≤ 𝑁, take 𝑥 =  𝑥𝑘
∗ + 𝜀𝑑𝑖 and run (Step 5); otherwise run (Step 6). 

Step 5: Minimize 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) use the point 𝑥 to find a local  minimum point 𝑥𝐹 of  

𝐹(𝑥, 𝑥𝑘
∗ , 𝜌), if 𝑥𝐹  ∈ Ω then setting 𝑥𝑖𝑛𝑡  =  𝑥F,  𝑘 = 𝑘 + 1 and run (Step 2);  if not, set 

𝑖 = 𝑖 + 1 and run (Step 4). 

Step 6: Put 𝑥∗ = 𝑥𝑘
∗  as a global minimum point of 𝑓(𝑥) and stopping run the 

algorithm. 

4. Numerical Experiments 

In this part, our algorithm is tested on problems 1-10 which are  listed in Table 1. 
On a computer with an Intel(R) Core(TM) (i7-3687U CPU and 2.60 GHz) and 
Matlab R2016a, we constructed our technique by evaluating 10 distinct beginning 
points separately for each of these problems, and these starting points are picked 
evenly from the domain Ω. 
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Table 1: The list of various test functions 
Interval Optimum 

value 
Functions Dimension (𝒏) Function 

(No.) 
[−𝑎, 𝑎] 2, 𝑎 = 3 𝑧𝑒𝑟𝑜 2-Dimensional 

function 𝑐 =  0.02 

2 1 

[−𝑎, 𝑎] 2, 𝑎 = 3 𝑧𝑒𝑟𝑜 2-Dimensional 
function 𝑐 =  0.2 

2  

[−𝑎, 𝑎] 2, 𝑎 = 3 𝑧𝑒𝑟𝑜 2-Dimensional 
function 𝑐 =  0.5 

2  

[−𝑎, 𝑎] 2, 𝑎 = 3 𝑧𝑒𝑟𝑜 3-Hump back camel 
function 

2 2 

[−𝑎, 𝑎] 2, 𝑎 = 3 −1.0316 6-Hump back camel 
function 

2 3 

[−𝑎, 𝑎] 2, 𝑎 = 3 𝑧𝑒𝑟𝑜 The function of 
Treccani 

2 4 

[−𝑎, 𝑎] 2, 𝑎 = 3 3.000 The function of 
Goldstein and Price 

2 5 

[−𝑎, 𝑎] 2, 𝑎 = 10 −186.73091 Shubert function 2 6 

[−𝑎, 𝑎] 2, 𝑎 = 3 −2.0000 Rastrigin function 2 7 

[−5, 10] × [10, 15] 0.3979 (RC)Branin function 2 8 

[−𝑎, 𝑎] 2, 𝑎 = 10 𝑧𝑒𝑟𝑜 Sin-square I function 2,3,5,7,10,15,20,30 9 
[−𝑎, 𝑎] 2, 𝑎 = 10 𝑧𝑒𝑟𝑜 Levy function 2,3,4,7,10,15,20,30 10 

 The symbols mean which used in this part in tables are listed as follows: 

 No: represents the test function problem numbers; 

 n: represents the test function problem dimensions; 

 k: the iteration number; 

 𝑥∗: the best solution of the objective function (global minimizer); 

 FE : the mean of functions evaluations of 𝑓(𝑥)  𝑎𝑛𝑑 𝐹(𝑥, 𝑥𝑘
∗ , 𝜌) ; 

 Time: the mean of attempts time in 10 different initial points (second); 

 FM : the mean of the objective function values in the 10 attempts; 

 FB : the best value of the objective function in the 10 attempts; 

 Ratio: the proportion of success to find a global minimizer using 10 
different points as starting points; 

The results of our algorithm on problems 1-10 are introduced in Table 2 for 
solving two dimension and on problems 9,10 are given in Table 3 for solving 
different dimensions. Our proposed method is evaluated on ten test problems with 
dimensions ranging from one to thirty, and each problem is tested on ten uniform 
trail points as a starting point. 
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Table 2: The computational results of our proposed method on problems 1-10 
No. n. k FE 𝒙∗ FM FB Time Ratio 

% 
1 2(c=0.05) 2 182 (0.9820; -0.0565) 2.0689e-13 6.6609e-16 0.0222 100 
 2(c=0.2) 3 213 (1.8973; -0.3005) 1.8332e-11 2.7425e-15 0.0987 100 
 2(c=0.5 2 227 (1.8513; -0.4021) 1.2796e-11 3.3378e-15 0.1307 100 

2 2 1 405 (0; 0) 1.3818e-10 0 0.0513 100 
3 2 2 182 (-0.0898; -0.7127) -1.0316 -1.0316 0.0212 100 
4 2 2 111 (0; 0) 3.7911e-10 1.1915e-16 0.0144 100 
5 2 1 460 (0; -1) 3.0000 3.0000 0.0534 100 
6 2 2 466 (-1.4251; 5.4829) -186.7309 -186.7309 0.0617 100 
7 2 1 725 (0; 0) 6.3949e-15 0 0.1066 100 
8 2 1 213 (-3.1416; 12.2750) 0.3979 0.3979 0.0236 100 
9 4 4 520 (1; 1) 1.1634e-13 .5887e-15 0. 0885 100 

10 4 3 414 (1; 1) 4.6210e-13 2.6872e-17 0.0691 100 

 
Table 3: Results of our algorithm for solving problems 9 and10 with different dimensions. 

𝐍𝐨. 𝐧. 𝐤 𝐅𝐄 𝐅𝐌 𝐅𝐁 𝐓𝐢𝐦𝐞 𝐑𝐚𝐭𝐢𝐨% 
9 3 4 879 3.6027e-12 1.2382e-16 0.0962 100 
 5 5 2371 5.1466e-10 4.7481e-16 0.1937 95 
 7 3 2138 1.9724e-13 2.8592e-15 0.2301 86 
 10 3 5105 1.3818e-10 2.9901e-15 0.2573 82 
 15 4 5377 2.9888e-06 6.8849e-14 0.2213 83 
 20 3 9255 1.7091e-10 2.8532e-15 0.3139 87 
 30 3 13500 5.4067e-11 7.3347e-16 0.4622 78 

10 3 2 867 4.1314e-13 7.0160e-15 0.0811 100 
 4 2 1120 3.4550e-13 2.1645e-15 0.1060 100 
 7 3 1650 1.4773e-13 3.7005e-16 0.1230 93 
 10 4 4112 6.4680e-13 1.2304e-14 0. 2825 92 
 15 1 2588 4.4769e-14 1.2981e-14 0.1591 85 
 20 2 7312 6.4947e-13 2.8522e-15 0.4276 95 
 30 2 7990 6.4656e-13 3.0205e-15 0.4507 95 

In Table 4 we compare our algorithm to the algorithms in [13] and [14], in terms of 
the value of iteration numbers 𝑘 and the mean value of function evaluations 𝐹𝐸 . It 
can be seen from Table 4 that the experiment results of our proposed method are 
more efficient than the methods introduced in [13] and [14]. 
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Table 4: Comparison of our algorithm with other algorithms 
  Our Algorithm The Algorithm in [13] The Algorithm in [14] 

No. n. k FE k FE k FE 
1 2(c=0.05) 2 182 2 214 2 310 
 2(c=0.2) 3 213 1 291 2 788 
 2(c=0.5 2 227 2 414 3 977 

2 2 1 405 1 411 2 577 
3 2 2 182 2 234 2 279 
4 2 2 111 1 217 2 265 
5 2 1 460 3 488 - - 
6 2 2 466 4 814 3 635 
7 2 1 725 1 501 2 315 
8 2 1 213 1 222 - - 
9 4 4 520 3 743 3 549 
 3 4 879 2 3027 2 1283 
 5 5 2371 2 4999 2 5291 
 7 3 2138 2 8171 2 12793 
 10 3 5105 3 8895 2 33810 
 20 3 9255 3 18242 2 96223 
 30 3 13500 4 43232 4 376885 

5. Conclusion 

This paper proposes a new filled function for solving unconstrained global 
optimization problems. The proposed filled function is controlled by one 
adjustable parameter.  It is clear from the numerical examples that the suggested 
strategy is more successful for global optimization problems. The proposed filled 
function method effectively solves multi-model global optimization problems, so 
we designed a corresponding algorithm. Moreover, in order to show the 
performance of the presented algorithm, We conducted several numerical 
experiments. The preliminary calculation results demonstrate the proposed 
method is effective and promising.  
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